Physics

QUALIFICATION	LENGTH	UCAS CODE
BSc (Hons)	3 years full time	F300
BSc (Hons) DIS/DPS	4 years full time sandwich	F301
MPhys (Hons)	4 years full time	F303
MPhys (Hons) DIS/DPS	5 years full time sandwich	F304

Degree Structure

PART A

SEMESTER 1	Foundations of Physics (Core Physics I)	Physics Laboratory I	Computational Physics	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I
SEMESTER 2	Classical Physics of Particles, Fields and Devices (Core Physics II)	Physics Laboratory I	Computational Physics	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I

PART B

SEMESTER 1	Quantum Physics (Core Physics III)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Astro Physics and Astronomy	Mathematics for Physics II	
SEMESTER 2	Thermal and Statistical Physics (Core Physics IV)	Solid State Physics (Core Physics V)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Astro Physics and Astronomy	Mathematics for Physics II

PART C

SEMESTER 1	Group Project and Individual Project	Research Methods in Physics (MPhys)	Option	Option
SEMESTER 2		Research Methods in Physics (MPhys)	Option	Option

Current options:

Semester 1

- Nuclear Physics
- Advanced Statistical Physics
- Surfaces Thin Films & High Vacuum
- Condensed Matter Physics
- Introduction to Dynamical Systems

Semester 2

- High Energy Particle Physics
- Photonics
- Medical Physics
- Physics of Nanodevices
- Studies in Science and Mathematics Education

PART D

SEMESTER 1	MPhys Research Project	Option	Option	
SEMESTER 2		Option	Option	

Current options:

Semester 1

- Topics in Advanced Quantum Mechanics
- Fluid Mechanics
- Characterisation Techniques in Solid State Physics
- Mathematical Modelling I
- Mathematical Methods for
 Interdisciplinary Science

Semester 2

- Spectral Theory
- Physics of Complex Systems
- Superconductivity and Nano-Science
- Quantum Computing
- Mathematical Modelling II
- Monte Carlo Methods Applied to Medical Physics

Engineering Physics

QUALIFICATION	LENGTH	UCAS CODE
BSc (Hons)	3 years full time	F311
BSc (Hons) DIS/DPS	4 years full time sandwich	F382
MPhys (Hons)	4 years full time	F312
MPhys (Hons) DIS/DPS	5 years full time sandwich	F313

Degree Structure

PART A

SEMESTER 1	Foundations of Physics (Core Physics I)	Physics Laboratory I	Computational Physics	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I
SEMESTER 2	Classical Physics of Particles, Fields and Devices (Core	Physics Laboratory I	Computational Physics	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I

	Flysics II)		

PART B

SEMESTER 1	Quantum Physics (Core Physics III)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Engineering Module by Stream	Mathematics for Physics II	
SEMESTER 2	Thermal & Statistical Physics (Core Physics IV)	Solid State Physics (Core Physics V)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Engineering Module by Stream	Mathematics for Physics II

Materials Engineering Stream **Semester 1**

Materials Modelling

Electrical Engineering Stream Semester 1

Control System Design I

Mechanical and Manufacturing Stream Semester 1

Manufacturing Technology

Systems Engineering Stream Semester 1

Semester 2

Materials Modelling

Semester 2

• Electrical Power and Machines

Semester 2

• Mechanics of Materials

Manufacturing Process Technology

Semester 2

Manufacturing Process Technology

PART C

SEMESTER 1	Group Project	Individual Project	Physics Ontional	Engineering Module by Stream	Engineering Module by Stream
SEMESTER 2	Tiojoot	Methods (MPhys)	Modules	Engineering Module by Stream	Engineering Module by Stream

Materials Engineering Stream

Semester 1

- Nanomaterials
- Advanced Principles of Materials

Electrical Engineering Stream

Semester 1

- Electronics
- State Space Control
- Interfacing for Mechatronic Systems

Mechanical and Manufacturing Stream

Semester 1

- Laser Materials Processing
- Mechanics of Materials II

Systems Engineering Stream

Semester 2

- Composite Materials
- Functional Materials

Semester 2

Electronics

Semester 2

- Computational Fluid Dynamics I
- Fracture and Failure

• • •

Semester 1

• Engineering Management: Finance, Law and Quality

Semester 2

- Control System Design 2
- Manufacturing Automation and Control

PART D

SEMESTER 1	MPhys Research	Physics Optional Modules	Engineering Modules
SEMESTER 2	Project	Physics Optional Modules	Across Semester 1 & 2

*optional modules

Materials Engineering Stream

Semester 1

- Materials Modelling
- Nanomaterials and Composites

Electrical Engineering Stream

Semester 1

- Digital Signal Processing*
- Information Theory and Coding*
- Solar Power*
- Antennas, Radar and Metamaterials*
- Wind Power*

Mechanical and Manufacturing Stream Semester 1

- Instrumentation Using Computer Control
- Composite Fluid Dynamics II
- Non Linear Dynamics

Systems Engineering Stream

Semester 1

Semester 2

- Advances in Biomaterials
- Advanced Processing of Materials

Semester 2

- Mobile Network Technologies
- Radio Frequency and Microwave Integrated Circuit Design

Semester 2

- Additive Manufacturing and Reverse
 Engineering
- Healthcare Engineering
- Laser and Optical Measurements

Semester 2

- Systems Architecture
- Mechatronic Systems Design

- Holistic Engineering
- Validation and Verification

Mathematics and Physics

QUALIFICATION	LENGTH	UCAS CODE
BSc (Hons)	3 years full time	F341
BSc (Hons) DIS/DPS	4 years full time sandwich	F340
MPhys (Hons)	4 years full time	F344
MPhys (Hons) DIS/DPS	5 years full time sandwich	F345

Degree Structure

PART A

SEMESTER 1	Foundations of Physics (Core Physics I)	Physics Laboratory I	Computational Physics I	Mathematics for Physics I	Analysis I
SEMESTER 2	Classical Physics of Particles, Fields and Devices (Core Physics II)	Physics Laboratory I	Computational Physics, Simulation and Good Practice	Mathematics for Physics I	Analysis II

PART B

SEMESTER 1	Quantum Physics (Core Physics III)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Mathematics for Physics II	Analysis III	
SEMESTER 2	Thermal & Statistical Physics (Core Physics IV)	Solid State Physics (Core Physics V)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Mathematics for Physics II	Elements of Topology

PART C

SEMESTER 1	Group Project	Individual Project (BSc)/Research	Option*
SEMESTER 2		Methods (MPhys)	Option*

*30 credit module

Current options:

Semester 1

- Introduction to Dynamical Systems
- Number Theory
- Graph Theory
- Introduction to Differential Geometry
- Nuclear Physics
- Advanced Statistical Physics
- Condensed Matter Physics
- Surfaces, Thin Film & High Vacuums

Semester 2

- Mathematics Report
- Studies in Science and Mathematics Education
- Linear Differential Equations
- Game Theory
- Photonics
- Medical Physics
- High Energy and Particle Physics
- Physics of Nanodevices

PART D

SEMESTER 1	MPhys Research	Option	Option
SEMESTER 2	Project	Option	Option

Current options:

Semester 1

- Topics in Advanced Quantum Mechanics
- Mathematical Methods for
 Interdisciplinary Sciences
- Characterisation Techniques in Solid State Physics
- Mathematical Modelling I
- Lie Groups and Lie Algebras
- Measure Theory

Semester 2

- Quantum Computing
- Physics of Complex Systems
- Superconductivity and Nano-Science
- Monte Carlo Methods Applied to Medical Physics
- Mathematical Modelling II
- Spectral Theory

Physics with Computing

QUALIFICATION	LENGTH	UCAS CODE
BSc (Hons)	3 years full time	FG33
BSc (Hons) DIS/DPS	4 years full time sandwich	FG34
MPhys (Hons)	4 years full time	F331
MPhys (Hons) DIS/DPS	5 years full time sandwich	F330

Degree Structure

PART A

SEMESTER 1	Foundations of Physics (Core Physics I)	Physics Laboratory I	Computational Physics, Simulation and Good Practice	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I
SEMESTER 2	Classical Physics of Particles, Fields and Devices (Core Physics II)	Physics Laboratory I	Computational Physics, Simulation and Good Practice	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I

PART B

SEMESTER 1	Quantum Physics (Core Physics III)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Data, Algorithm and Optimisation	Mathematics for Physics II	
SEMESTER 2	Thermal & Statistical Physics (Core Physics IV)	Solid State Physics (Core Physics V)	Physics Laboratory II	Advanced Computational Modelling and Simulation	Data, Algorithm and Optimisation	Mathematics for Physics II

PART C

SEMESTER 1	Group Project	Individual Project	Al Methods	Option	Option
SEMESTER 2		Methods (MPhys)		Option	Option

Current options:

Semester 1

- Advanced Statistical Physics
- Surfaces, Thin Films & High Vacuum
- Nuclear Physics
- Condensed Matter Physics

Semester 2

- Data Mining and Machine Learning
- Studies in Science or Mathematics Education
- Photonics
- Medical Physics
- High Energy Particle Physics
- Physics of Nanodevice

PART D

SEMESTER 1	MPhys Research	Option	Option
SEMESTER 2	Project	Option	Option

Current options:

Semester 1

- Programming for Specialist Applications
- Programming for Data Science
- Artificial Intelligence
- Machine Learning
- Cryptography & Secure Systems
- Robotics & Intelligent Systems
- Programming and Numerical Methods
- Mathematical Modelling I
- Statistical Methods and Data Analysis
- Characterisation Techniques in Solid State Physics
- Topics in Quantum Mechanics
- Mathematical Methods for Interdisciplinary Sciences

Semester 2

- Quantum Computing
- Physics of Complex Systems
- Superconductivity and Nano-Science
- Mathematical Modelling II
- Computational Methods in Finance
- Stochastic Calculus & Theory of Pricing
- Statistics for Large Data
- Monte Carlo Methods Applied to Physics
- Computer Vision
- Big Data Analytics and Visualisation
- Al and Applied Machine Learning
- Data Mining

Physics with Theoretical Physics

QUALIFICATION	LENGTH	UCAS CODE
BSc (Hons)	3 years full time	F346
BSc (Hons) DIS/DPS	4 years full time sandwich	F342
MPhys (Hons)	4 years full time	F348
MPhys (Hons) DIS/DPS	5 years full time sandwich	F347

Degree Structure

PART A

SEMESTER 1	Core Physics I; Foundations of Physics	Physics Laboratory I	Computational Physics	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I
SEMESTER 2	Core Physics II: Classical Physics of Particles, Fields and Devices	Physics Laboratory I	Computational Physics	Methods, Philosophy and Frontiers of Physical Science	Mathematics for Physics I

PART B

SEMESTER 1	Core Physics III: Quantum Physics	Physics Laboratory II	Advanced Computational Modelling and Simulation	Probability Theory	Mathematics for Physics II	
SEMESTER 2	Core Physics IV: Thermal & Statistical Physics	Core Physics V: Solid State Physics	Physics Laboratory II	Advanced Computational Modelling and Simulation	Complex Analysis	Mathematics for Physics II

PART C

SEMESTER 1	Group Project and Individual Project (BSc)/Research Methods (MPhys)	Option	Option
SEMESTER 2		Option	Option

Current options:

Semester 1

- Advanced Statistical Physics
- Condensed Matter Physics
- Nuclear Physics
- Introduction to Dynamical Systems
- Introduction to Differential Geometry

Semester 2

- Medical Physics
- Photonics
- High Energy Particle Physics
- Physics of Nanodevices
- Linear Differential Equations
- Vibrations and Waves
- Studies in Science and Mathematics Education

PART D

SEMESTER 1	MPhys Research Project	Option	Option
SEMESTER 2		Option	Option

Current options:

Semester 1

- Topics in Advanced Quantum Mechanics
- Mathematical Methods for
 Interdisciplinary Science
- Characterisation Techniques in Solid State Physics
- Mathematical Modelling I
- Programming & Numerical Methods
- Fluid Mechanics

Semester 2

- Quantum Computing
- Physics of Complex Systems
- Superconductivity and Nano-Science
- Monte Carlo Methods Applied to Medical Physics
- Nonlinear Waves
- Spectral Theory
- Mathematical Modelling II

